Previous
Visualize data
Data pipelines automatically transform raw sensor readings into summaries and insights at a schedule that you choose. Viam stores the output of these pipelines in a separate, queryable database.
For example, you may often query the average temperature across multiple sensors for each hour of the day. To make these queries faster, you can use a data pipeline to pre-calculate the results, saving significant computational resources.
Data pipelines work with incomplete data as well.
If a machine goes offline, data collection continues but sync pauses.
viam-server
stores the data locally and syncs later, when your machine reconnects to Viam.
Once the machine reconnects and syncs this stored data, Viam automatically re-runs affected pipelines to include the new data.
While not a requirement, it is easier to test data pipelines if you have already enabled data capture from at least one component and begun syncing data with Viam before setting up a pipeline.
Only users with organization owner permissions can create a data pipeline.
To define a data pipeline, specify a name, organization, schedule, data source type, and query:
Use datapipelines create
to create your pipeline:
viam datapipelines create \
--org-id=<org-id> \
--name=sensor-counts \
--schedule="0 * * * *" \
--data-source-type="standard" \
--mql='[{"$match": {"component_name": "sensor"}}, {"$group": {"_id": "$location_id", "avg_temp": {"$avg": "$data.readings.temperature"}, "count": {"$sum": 1}}}, {"$project": {"location": "$_id", "avg_temp": 1, "count": 1}}]' \
--enable-backfill=True
To pass your query as a file instead of specifying it as inline MQL, pass the --mql-path
flag instead of --mql
.
To create a pipeline that reads data from the hot data store, specify --data-source-type hotstorage
.
To define a new pipeline, call DataClient.CreateDataPipeline
:
import asyncio
from viam.rpc.dial import DialOptions, Credentials
from viam.app.viam_client import ViamClient
from viam.gen.app.data.v1.data_pb2 import TabularDataSourceType
# Configuration constants – replace with your actual values
API_KEY = "" # API key, find or create in your organization settings
API_KEY_ID = "" # API key ID, find or create in your organization settings
ORG_ID = "" # Organization ID, find or create in your organization settings
async def connect() -> ViamClient:
"""Establish a connection to the Viam client using API credentials."""
dial_options = DialOptions(
credentials=Credentials(
type="api-key",
payload=API_KEY,
),
auth_entity=API_KEY_ID
)
return await ViamClient.create_from_dial_options(dial_options)
async def main() -> int:
viam_client = await connect()
data_client = viam_client.data_client
pipeline_id = await data_client.create_data_pipeline(
name="test-pipeline",
organization_id=ORG_ID,
mql_binary=[
{"$match": {"component_name": "temperature-sensor"}},
{
"$group": {
"_id": "$location_id",
"avg_temp": {"$avg": "$data.readings.temperature"},
"count": {"$sum": 1}
}
},
{
"$project": {
"location": "$_id",
"avg_temp": 1,
"count": 1
}
}
],
schedule="0 * * * *",
data_source_type=TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_STANDARD,
enable_backfill=False,
)
print(f"Pipeline created with ID: {pipeline_id}")
viam_client.close()
return 0
if __name__ == "__main__":
asyncio.run(main())
To create a pipeline that reads data from the hot data store, set your query’s data_source
to TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_HOT_STORAGE
.
To define a new pipeline, call DataClient.CreateDataPipeline
:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
orgID := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
// Create MQL stages as map slices
mqlStages := []map[string]interface{}{
{"$match": map[string]interface{}{"component_name": "temperature-sensor"}},
{
"$group": map[string]interface{}{
"_id": "$location_id",
"avg_temp": map[string]interface{}{"$avg": "$data.readings.temperature"},
"count": map[string]interface{}{"$sum": 1},
},
},
{
"$project": map[string]interface{}{
"location": "$_id",
"avg_temp": 1,
"count": 1,
},
},
}
pipelineId, err := dataClient.CreateDataPipeline(
ctx,
orgID,
"test-pipeline",
mqlStages,
"0 * * * *",
false,
&app.CreateDataPipelineOptions{
TabularDataSourceType: 0,
},
)
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Pipeline created with ID: %s\n", pipelineId)
}
To create a pipeline that reads data from the hot data store, set your query’s data_source
field to TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_HOT_STORAGE
.
To define a new pipeline, call dataClient.CreateDataPipeline
:
import { createViamClient } from "@viamrobotics/sdk";
// Configuration constants – replace with your actual values
let API_KEY = ""; // API key, find or create in your organization settings
let API_KEY_ID = ""; // API key ID, find or create in your organization settings
let ORG_ID = ""; // Organization ID, find or create in your organization settings
async function main(): Promise<void> {
// Create Viam client
const client = await createViamClient({
credentials: {
type: "api-key",
authEntity: API_KEY_ID,
payload: API_KEY,
},
});
const pipelineId = await client.dataClient.createDataPipeline(
ORG_ID,
"test-pipeline",
[
{ "$match": { "component_name": "temperature-sensor" } },
{ "$group": { "_id": "$location_id", "avg_temp": { "$avg": "$data.readings.temperature" }, "count": { "$sum": 1 } } },
{ "$project": { "location": "$_id", "avg_temp": 1, "count": 1 } }
],
"0 * * * *",
0,
false,
);
console.log(`Pipeline created with ID: ${pipelineId}`);
}
// Run the script
main().catch((error) => {
console.error("Script failed:", error);
process.exit(1);
});
To create a pipeline that reads data from the hot data store, set your query’s dataSource
field to TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_HOT_STORAGE
.
Avoid specifying an _id
value in your pipeline’s final group stage unless you can guarantee its uniqueness across all pipeline runs.
Non-unique IDs will trigger duplicate key errors, preventing the pipeline from saving subsequent results.
Because the $group
stage requires an _id
value, follow any final $group
stage with a $project
stage that renames the _id
field to a different name.
To create a schedule for your pipeline, specify a cron expression in UTC. The schedule determines both execution frequency and the range of time queried by each execution. The following table contains some common schedules, which correspond to the listed execution frequencies and query time range:
Schedule | Frequency | Query Time Range |
---|---|---|
0 * * * * | Hourly | Previous hour |
0 0 * * * | Daily | Previous day |
*/15 * * * * | Every 15 minutes | Previous 15 minutes |
Data pipeline queries only support a subset of MQL aggregation operators. For more information, see Supported aggregation operators.
To query the results of your data pipeline, call DataClient.TabularDataByMQL
.
Configure the data_source
argument with the following fields:
type
: TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_PIPELINE_SINK
pipeline_id
: your pipeline ID
import asyncio
from viam.rpc.dial import DialOptions, Credentials
from viam.app.viam_client import ViamClient
from viam.gen.app.data.v1.data_pb2 import TabularDataSourceType
# Configuration constants – replace with your actual values
API_KEY = "" # API key, find or create in your organization settings
API_KEY_ID = "" # API key ID, find or create in your organization settings
ORG_ID = "" # Organization ID, find or create in your organization settings
PIPELINE_ID = ""
async def connect() -> ViamClient:
"""Establish a connection to the Viam client using API credentials."""
dial_options = DialOptions(
credentials=Credentials(
type="api-key",
payload=API_KEY,
),
auth_entity=API_KEY_ID
)
return await ViamClient.create_from_dial_options(dial_options)
async def main() -> int:
viam_client = await connect()
data_client = viam_client.data_client
tabular_data = await data_client.tabular_data_by_mql(
organization_id=ORG_ID,
query=[
{"$match": {"component_name": "sensor-1"}},
{
"$group": {
"_id": "$location_id",
"avg_val": {"$avg": "$data.readings.a"},
"count": {"$sum": 1}
}
},
{
"$project": {
"location": "$_id",
"avg_val": 1,
"count": 1
}
}
],
tabular_data_source_type=TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_PIPELINE_SINK,
pipeline_id=PIPELINE_ID
)
print(f"Tabular Data: {tabular_data}")
viam_client.close()
return 0
if __name__ == "__main__":
asyncio.run(main())
To query the results of your data pipeline, call DataClient.TabularDataByMQL
.
Configure the DataSource
argument with the following fields:
Type
: datapb.TabularDataSourceType_TABULAR_DATA_SOURCE_TYPE_PIPELINE_SINK
PipelineId
: your pipeline’s ID
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
orgID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
// Create MQL stages as map slices
mqlStages := []map[string]interface{}{
{"$match": map[string]interface{}{"component_name": "sensor-1"}},
{
"$group": map[string]interface{}{
"_id": "$location_id",
"avg_val": map[string]interface{}{"$avg": "$data.readings.a"},
"count": map[string]interface{}{"$sum": 1},
},
},
{
"$project": map[string]interface{}{
"location": "$_id",
"avg_val": 1,
"count": 1,
},
},
}
tabularData, err := dataClient.TabularDataByMQL(ctx, orgID, mqlStages, &app.TabularDataByMQLOptions{
TabularDataSourceType: 3,
PipelineID: pipelineId,
})
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Tabular Data: %v\n", tabularData)
}
To query the results of your data pipeline, call dataClient.TabularDataByMQL
.
Configure the data_source
argument with the following fields:
type
: TabularDataSourceType.TABULAR_DATA_SOURCE_TYPE_PIPELINE_SINK
pipelineId
: your pipeline’s ID
import { createViamClient } from "@viamrobotics/sdk";
// Configuration constants – replace with your actual values
let API_KEY = ""; // API key, find or create in your organization settings
let API_KEY_ID = ""; // API key ID, find or create in your organization settings
let ORG_ID = ""; // Organization ID, find or create in your organization settings
let PIPELINE_ID = "";
async function main(): Promise<void> {
// Create Viam client
const client = await createViamClient({
credentials: {
type: "api-key",
authEntity: API_KEY_ID,
payload: API_KEY,
},
});
const tabularData = await client.dataClient.tabularDataByMQL(
ORG_ID,
[
{ "$match": { "component_name": "sensor-1" } },
{ "$group": { "_id": "$location_id", "avg_val": { "$avg": "$data.readings.a" }, "count": { "$sum": 1 } } },
{ "$project": { "location": "$_id", "avg_val": 1, "count": 1 } }
],
{
tabularDataSourceType: 3,
pipelineId: PIPELINE_ID,
}
);
console.log(tabularData);
}
// Run the script
main().catch((error) => {
console.error("Script failed:", error);
process.exit(1);
});
Use datapipelines list
to fetch a list of pipeline configurations in an organization:
viam datapipelines list --org-id=<org-id>
Use DataClient.ListDataPipelines
to fetch a list of pipeline configurations in an organization:
import asyncio
from viam.rpc.dial import DialOptions, Credentials
from viam.app.viam_client import ViamClient
from viam.gen.app.data.v1.data_pb2 import TabularDataSourceType
# Configuration constants – replace with your actual values
API_KEY = "" # API key, find or create in your organization settings
API_KEY_ID = "" # API key ID, find or create in your organization settings
ORG_ID = "" # Organization ID, find or create in your organization settings
async def connect() -> ViamClient:
"""Establish a connection to the Viam client using API credentials."""
dial_options = DialOptions(
credentials=Credentials(
type="api-key",
payload=API_KEY,
),
auth_entity=API_KEY_ID
)
return await ViamClient.create_from_dial_options(dial_options)
async def main() -> int:
viam_client = await connect()
data_client = viam_client.data_client
pipelines = await data_client.list_data_pipelines(ORG_ID)
for pipeline in pipelines:
print(f"Pipeline: {pipeline.name}, ID: {pipeline.id}, schedule: {pipeline.schedule}, data_source_type: {pipeline.data_source_type}")
viam_client.close()
return 0
if __name__ == "__main__":
asyncio.run(main())
Use DataClient.ListDataPipelines
to fetch a list of pipeline configurations in an organization:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
orgID := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
pipelines, err := dataClient.ListDataPipelines(ctx, orgID)
if err != nil {
logger.Fatal(err)
}
for _, pipeline := range pipelines {
fmt.Printf("Pipeline: %s, ID: %s, schedule: %s, data_source_type: %s, enable_backfill: %t\n", pipeline.Name, pipeline.ID, pipeline.Schedule, pipeline.DataSourceType)
}
}
Use dataClient.ListDataPipelines
to fetch a list of pipeline configurations in an organization:
import { createViamClient } from "@viamrobotics/sdk";
// Configuration constants – replace with your actual values
let API_KEY = ""; // API key, find or create in your organization settings
let API_KEY_ID = ""; // API key ID, find or create in your organization settings
let ORG_ID = ""; // Organization ID, find or create in your organization settings
async function main(): Promise<void> {
// Create Viam client
const client = await createViamClient({
credentials: {
type: "api-key",
authEntity: API_KEY_ID,
payload: API_KEY,
},
});
const pipelines = await client.dataClient.listDataPipelines(ORG_ID);
for (const pipeline of pipelines) {
console.log(`Pipeline: ${pipeline.name}, ID: ${pipeline.id}, schedule: ${pipeline.schedule}, data_source_type: ${pipeline.dataSourceType}`);
}
}
// Run the script
main().catch((error) => {
console.error("Script failed:", error);
process.exit(1);
});
Use caution when updating the query or schedule of a data pipeline. Changing either value can lead to inconsistent pipeline output history.
Use datapipelines update
to alter an existing data pipeline:
viam datapipelines update \
--org-id=<org-id> \
--id=<pipeline-id> \
--schedule="0 * * * *" \
--name="updated-name" \
--mql='[{"$match": {"component_name": "sensor"}}, {"$group": {"_id": "$part_id", "total": {"$sum": "$1"}}, {"$project": {"part": "$_id", "avg_temp": 1, "count": 1}}]'
To pass your query from a file instead of from inline MQL, pass the --mql-path
flag instead of --mql
.
Use DataClient.UpdateDataPipeline
to alter an existing data pipeline:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
// Create MQL stages as map slices
mqlStages := []map[string]interface{}{
{"$match": map[string]interface{}{"component_name": "temperature-sensor"}},
{
"$group": map[string]interface{}{
"_id": "$location_id",
"avg_temp": map[string]interface{}{"$avg": "$data.readings.temperature"},
"count": map[string]interface{}{"$sum": 1},
},
},
{
"$project": map[string]interface{}{
"location": "$_id",
"avg_temp": 1,
"count": 1,
},
},
}
err = dataClient.UpdateDataPipeline(ctx, pipelineId, "test-pipeline-updated", mqlStages, "0 * * * *", app.TabularDataSourceTypeStandard)
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Pipeline updated with ID: %s\n", pipelineId)
}
Use datapipelines enable
to enable a disabled data pipeline:
viam datapipelines enable --id=<pipeline-id>
Use DataClient.EnableDataPipeline
to enable a disabled data pipeline:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
err = dataClient.EnableDataPipeline(ctx, pipelineId)
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Pipeline enabled with ID: %s\n", pipelineId)
}
Disabling a data pipeline lets you pause data pipeline execution without fully deleting the pipeline configuration from your organization. The pipeline immediately stops aggregating data. You can re-enable the pipeline at any time to resume execution. When a pipeline is re-enabled, Viam will not backfill missed time windows from the period of time when a pipeline was disabled.
Use datapipelines disable
to disable a data pipeline:
viam datapipelines disable --id=<pipeline-id>
Use DataClient.DisableDataPipeline
to disable a data pipeline:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
err = dataClient.DisableDataPipeline(ctx, pipelineId)
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Pipeline disabled with ID: %s\n", pipelineId)
}
Use datapipelines delete
to delete a data pipeline, its execution history, and all output generated by that pipeline:
viam datapipelines delete --id=<pipeline-id>
Use DataClient.DeleteDataPipeline
to delete a data pipeline:
import asyncio
from viam.rpc.dial import DialOptions, Credentials
from viam.app.viam_client import ViamClient
from viam.gen.app.data.v1.data_pb2 import TabularDataSourceType
# Configuration constants – replace with your actual values
API_KEY = "" # API key, find or create in your organization settings
API_KEY_ID = "" # API key ID, find or create in your organization settings
PIPELINE_ID = ""
async def connect() -> ViamClient:
"""Establish a connection to the Viam client using API credentials."""
dial_options = DialOptions(
credentials=Credentials(
type="api-key",
payload=API_KEY,
),
auth_entity=API_KEY_ID
)
return await ViamClient.create_from_dial_options(dial_options)
async def main() -> int:
viam_client = await connect()
data_client = viam_client.data_client
await data_client.delete_data_pipeline(PIPELINE_ID)
print(f"Pipeline deleted with ID: {PIPELINE_ID}")
viam_client.close()
return 0
if __name__ == "__main__":
asyncio.run(main())
Use DataClient.DeleteDataPipeline
to delete a data pipeline:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
err = dataClient.DeleteDataPipeline(ctx, pipelineId)
if err != nil {
logger.Fatal(err)
}
fmt.Printf("Pipeline deleted with ID: %s\n", pipelineId)
}
Use dataClient.DeleteDataPipeline
to delete a data pipeline:
import { createViamClient } from "@viamrobotics/sdk";
// Configuration constants – replace with your actual values
let API_KEY = ""; // API key, find or create in your organization settings
let API_KEY_ID = ""; // API key ID, find or create in your organization settings
let PIPELINE_ID = "";
async function main(): Promise<void> {
// Create Viam client
const client = await createViamClient({
credentials: {
type: "api-key",
authEntity: API_KEY_ID,
payload: API_KEY,
},
});
await client.dataClient.deleteDataPipeline(PIPELINE_ID);
console.log(`Pipeline deleted with ID: ${PIPELINE_ID}`);
}
// Run the script
main().catch((error) => {
console.error("Script failed:", error);
process.exit(1);
});
Data pipeline executions may have any of the following statuses:
SCHEDULED
: pending executionSTARTED
: currently processingCOMPLETED
: successfully finishedFAILED
: execution errorUse DataClient.ListDataPipelineRuns
to view information about past and in-progress executions of a pipeline:
import asyncio
from viam.rpc.dial import DialOptions, Credentials
from viam.app.viam_client import ViamClient
from viam.gen.app.data.v1.data_pb2 import TabularDataSourceType
# Configuration constants – replace with your actual values
API_KEY = "" # API key, find or create in your organization settings
API_KEY_ID = "" # API key ID, find or create in your organization settings
PIPELINE_ID = ""
async def connect() -> ViamClient:
"""Establish a connection to the Viam client using API credentials."""
dial_options = DialOptions(
credentials=Credentials(
type="api-key",
payload=API_KEY,
),
auth_entity=API_KEY_ID
)
return await ViamClient.create_from_dial_options(dial_options)
async def main() -> int:
viam_client = await connect()
data_client = viam_client.data_client
pipeline_runs = await data_client.list_data_pipeline_runs(PIPELINE_ID, 10)
for run in pipeline_runs.runs:
print(f"Run: ID: {run.id}, status: {run.status}, start_time: {run.start_time}, end_time: {run.end_time}, data_start_time: {run.data_start_time}, data_end_time: {run.data_end_time}")
viam_client.close()
return 0
if __name__ == "__main__":
asyncio.run(main())
Use DataClient.ListDataPipelineRuns
to view information about past executions of a pipeline:
package main
import (
"context"
"fmt"
"go.viam.com/rdk/app"
"go.viam.com/rdk/logging"
)
func main() {
apiKey := ""
apiKeyID := ""
pipelineId := ""
logger := logging.NewDebugLogger("client")
ctx := context.Background()
viamClient, err := app.CreateViamClientWithAPIKey(
ctx, app.Options{}, apiKey, apiKeyID, logger)
if err != nil {
logger.Fatal(err)
}
defer viamClient.Close()
dataClient := viamClient.DataClient()
pipelineRuns, err := dataClient.ListDataPipelineRuns(ctx, pipelineId, 10)
if err != nil {
logger.Fatal(err)
}
for _, run := range pipelineRuns.Runs {
fmt.Printf("Run: ID: %s, status: %s, start_time: %s, end_time: %s, data_start_time: %s, data_end_time: %s\n", run.ID, run.Status, run.StartTime, run.EndTime, run.DataStartTime, run.DataEndTime)
}
}
Use dataClient.ListDataPipelineRuns
to view information about past executions of a pipeline:
import { createViamClient } from "@viamrobotics/sdk";
// Configuration constants – replace with your actual values
let API_KEY = ""; // API key, find or create in your organization settings
let API_KEY_ID = ""; // API key ID, find or create in your organization settings
let PIPELINE_ID = "";
async function main(): Promise<void> {
// Create Viam client
const client = await createViamClient({
credentials: {
type: "api-key",
authEntity: API_KEY_ID,
payload: API_KEY,
},
});
const pipelineRuns = await client.dataClient.listDataPipelineRuns(PIPELINE_ID, 10);
for (const run of pipelineRuns.runs) {
console.log(
`Run: ID: ${run.id}, status: ${run.status}, start_time: ${run.startTime}, ` +
`end_time: ${run.endTime}, data_start_time: ${run.dataStartTime}, data_end_time: ${run.dataEndTime}`
);
}
}
// Run the script
main().catch((error) => {
console.error("Script failed:", error);
process.exit(1);
});
Was this page helpful?
Glad to hear it! If you have any other feedback please let us know:
We're sorry about that. To help us improve, please tell us what we can do better:
Thank you!